10 research outputs found

    Exploration of promising optical and electronic properties of (non-polymer) small donor molecules for organic solar cells

    Get PDF
    Abstract Non-fullerene based organic compounds are considered promising materials for the fabrication of modern photovoltaic materials. Non-fullerene-based organic solar cells comprise of good photochemical and thermal stability along with longer device lifetimes as compared to fullerene-based compounds. Five new non-fullerene donor molecules were designed keeping in view the excellent donor properties of 3-bis(4-(2-ethylhexyl)-thiophen-2-yl)-5,7-bis(2ethylhexyl) benzo[1,2-:4,5-câ€Č]-dithiophene-4,8-dione thiophene-alkoxy benzene-thiophene indenedione (BDD-IN) by end-capped modifications. Photovoltaic and electronic characteristics of studied molecules were determined by employing density functional theory (DFT) and time dependent density functional theory (TD-DFT). Subsequently, obtained results were compared with the reference molecule BDD-IN. The designed molecules presented lower energy difference (ΔΕ) in the range of 2.17–2.39 eV in comparison to BDD-IN (= 2.72 eV). Moreover, insight from the frontier molecular orbital (FMO) analysis disclosed that central acceptors are responsible for the charge transformation. The designed molecules were found with higher λmax values and lower transition energies than BDD-IN molecule due to stronger end-capped acceptors. Open circuit voltage (Voc) was observed in the higher range (1.54–1.78 V) in accordance with HOMOdonor–LUMOPC61BM by designed compounds when compared with BDD-IN (1.28 V). Similarly, lower reorganization energy values were exhibited by the designed compounds in the range of λe(0.00285–0.00370 Eh) and λh(0.00847–0.00802 Eh) than BDD-IN [λe(0.00700 Eh) and λh(0.00889 Eh)]. These measurements show that the designed compounds are promising candidates for incorporation into solar cell devices, which would benefit from better hole and electron mobility

    A facile and efficient synthesis of 1,8-dioxodecahydroacridines derivatives catalyzed by cobalt–alanine metal complex under aqueous ethanol media

    No full text
    Abstract A facile and convenient method for the synthesis of acridines and its derivatives was developed through one-pot, three-component condensation reaction of aromatic aldehydes, 5,5-dimethyl-1,3-cyclohexanedione, aryl amines or ammonium acetates in the presence of a catalytic amount of cobalt–alanine metal complex using aqueous ethanol as a reaction medium is reported. The present described novel methodology offers several advantages over the traditional methods reported in the literature, such as mild reaction conditions, inexpensive catalyst, short reaction times, excellent yields of products, simplicity and easy workup are the advantages of this procedure

    Effects of Different Precursors on Particle Size and Optical–Magnetic Properties of ZnCr2O4 Nanoparticles Prepared by Microwave-Assisted Method

    No full text
    Zinc chromite (ZnCr2O4)-based nanoparticles have various exceptional properties that make them suitable for use in a variety of fields, including chemistry, medicine, energy, the environment, industry, and information. In this work, nanocrystalline ZnCr2O4 has been effectively synthesized with a distinct fuel by microwave-assisted solution combustion method. The XRD results reveal a single-phase high pure formation of nanoscale ZnCr2O4. The ZnCr2O4 samples are further characterized by scanning electron microscopy, transmission electron microscope, UV–Vis absorption spectroscopy, and vibrating sample magnetometer. The results reveal that modifying the fuel precursors in the combustion technique played an impact on the particle size, bandgap energy, magnetic properties, and reaction time of the ZnCr2O4 preparation. The average particle size of the various samples ranged from 18.6 to 13.9 nm with various fuels. The significance of this study is the tuning effect of optical and magnetic properties of ZnCr2O4 by using various fuel precursors

    Catalytic and Photocatalytic Degradation Activities of Nanoscale Mn-Doped ZnCr2O4

    No full text
    In the present work, the effect of Mn doping in Zinc Chromite (ZnCr2O4) and particle size reduction on catalytic and photocatalytic degradation performance have been evaluated. The pristine Zn1−xMnxCr2O4 (x = 0 to 0.03) nanoscale samples are synthesized through a hydrothermal approach. The synthesized catalysts are characterized by XRD, HR-SEM, HR-TEM, catalytic, and photocatalytic degradation analyses. X-ray diffraction analysis results confirmed the formation of the ZnCr2O4 structure and its phase purity, crystallite size, and Mn dopant effect. The surface morphology and particle size of Zn1−xMnxCr2O4 samples are evaluated by SEM and TEM measurements. The textural properties of ZnCr2O4 samples are identified by the surface area analysis. The catalytic performance of Mn-doped ZnCr2O4 samples reveals superior catalytic performance compared to pristine ZnCr2O4 in benzaldehyde and carbonyl compound productions. Under UV irradiation, an excellent photocatalytic degradation efficiency of 89.66% for Zn0.97Mn0.03Cr2O4 catalyst with methylene blue has been obtained

    Synthesis of 1,2-Dihydro-Substituted Aniline Analogues Involving N-Phenyl-3-aza-Cope Rearrangement Using a Metal-Free Catalytic Approach

    No full text
    An efficient metal-free domino reaction leading to structural/electronically divergent 1,2-dihydropyridines from easily accessible propargyl vinyl anilines via N-phenyl 3-aza-Cope sigmatropic rearrangement is reported with good to excellent yields using 1,2-dichlorobenzene as solvent under thermal conditions. Spirocyclic substitution is also tolerated under the present optimized conditions

    Geospatial Evaluation of Cropping Pattern and Cropping Intensity Using Multi Temporal Harmonized Product of Sentinel-2 Dataset on Google Earth Engine

    No full text
    Due to the declining land resources over the past few decades, the intensification of land uses has played a significant role in balancing the ever-increasing demand for food in developing nations such as India. To optimize agricultural land uses, one of the crucial indicators is cropping intensity, which measures the number of times a single parcel of land is farmed. Therefore, it is imperative to create a timely and accurate cropping intensity map so that landowners and agricultural planners can use it to determine the best course of action for the present and for the future. In the present study, we have developed an algorithm on Google Earth Engine (GEE) to depict cropping patterns and further fused it with a GIS environment to depict cropping intensity in the arid western plain zone of Rajasthan, India. A high-resolution multi-temporal harmonized product of the Sentinel-2 dataset was incorporated for depicting the growth cycle of crops for the year 2020–2021 using the greenest pixel composites. Kharif and Rabi accounted for 73.44% and 26.56% of the total cultivated area, respectively. Only 7.42% was under the double-cropped area to the total cultivated area. The overall accuracy of the classified image was 90%. For the Kharif crop, the accuracy was 95%, while for Rabi and the double-cropped region, the accuracy was 88%, with a kappa coefficient of 0.784. The present study was able to depict the seasonal plantation system in arid arable land with higher accuracy. The proposed work can be used to monitor cropping patterns and cost-effectively show cropping intensities

    A Recent and Systemic Approach Towards Microbial Biodegradation of Dyes from Textile Industries

    No full text
    The textile industry generated a series of synthetic dyestuffs that threatened environmental protection. Azo dyes, widely utilized in textile, paper, fruit, leathers, cosmeceuticals and pharmaceutical fields, account for most of the dyestuffs made. Since they have colour fastness properties, stability, and susceptibility to oxidation, existing effluent treatment methods cannot entirely strip different dyes from effluents. Under certain environmental factors, bacteria decolourize and degrade dyes. The treatment process is cheap, environmentally safe, and can be used on various dyes. However, textile plant wastewater can produce many polluting chemicals and dyes. Environmental legislation is increasingly being enacted to regulate mainly azo-based dyes in the environment. The potential of the microbes for the decolourization of dyes and metabolizing them is long-known knowledge. The toxic components of dyes challenge a potential threat to all the living forms of life. Though both natural and synthetic dyes are used for the colourization of textiles, only synthetic ones are challenging to decolourize. Microbial-based bioremediation of dyes has been studied and reviewed primarily to accelerate dye degradation. The various piece of the literature revealed that the majority of these dye removal microbes belong to mainly white-rot fungi, a consortium of anaerobic bacteria. In addition to this, there are several (genetically engineered microorganisms) GEMs that remediate dyes efficiently. Here in the current review, the authors have tried to bridge the existing gap in the bioremediation of dyestuff. Moreover, the authors have also tried to provide the latest trend in this field. This study will surely benefit the industries and researchers related to dyestuffs by maintaining eco-friendly approaches

    A Recent and Systemic Approach Towards Microbial Biodegradation of Dyes from Textile Industries

    No full text
    The textile industry generated a series of synthetic dyestuffs that threatened environmental protection. Azo dyes, widely utilized in textile, paper, fruit, leathers, cosmeceuticals and pharmaceutical fields, account for most of the dyestuffs made. Since they have colour fastness properties, stability, and susceptibility to oxidation, existing effluent treatment methods cannot entirely strip different dyes from effluents. Under certain environmental factors, bacteria decolourize and degrade dyes. The treatment process is cheap, environmentally safe, and can be used on various dyes. However, textile plant wastewater can produce many polluting chemicals and dyes. Environmental legislation is increasingly being enacted to regulate mainly azo-based dyes in the environment. The potential of the microbes for the decolourization of dyes and metabolizing them is long-known knowledge. The toxic components of dyes challenge a potential threat to all the living forms of life. Though both natural and synthetic dyes are used for the colourization of textiles, only synthetic ones are challenging to decolourize. Microbial-based bioremediation of dyes has been studied and reviewed primarily to accelerate dye degradation. The various piece of the literature revealed that the majority of these dye removal microbes belong to mainly white-rot fungi, a consortium of anaerobic bacteria. In addition to this, there are several (genetically engineered microorganisms) GEMs that remediate dyes efficiently. Here in the current review, the authors have tried to bridge the existing gap in the bioremediation of dyestuff. Moreover, the authors have also tried to provide the latest trend in this field. This study will surely benefit the industries and researchers related to dyestuffs by maintaining eco-friendly approaches
    corecore